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Abstract

This paper presents a new technique for monitoring the condition of rotating machinery from vibration analyses.

The proposed method combines the capability of wavelet transform (WT) to treat transient signals with the ability of

auto-associative neural networks to extract features of data sets in an unsupervised mode. Trained and configured

networks with WT coefficients of nonfaulty signals are used as a method to detect the novelties or anomalies of faulty

signals. The effectiveness of the proposed technique is evaluated using the numerical data and experimental vibration data

of a gearbox. Despite the fact that noise is present in both cases, results demonstrated that the proposed method is a good

candidate to be used as an online diagnosis tool for rotating machinery.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Rotating machines play an important role in industrial applications. Typical applications are in
aeronautical, naval and automotive industries. The need to decrease the downtime on production machinery
and to increase reliability against possible failures has attracted interest in the online condition monitoring of
these systems in recent years. The main purpose of the diagnosis is to analyse the relevant external information
in order to judge the condition of the inaccessible internal components so as to decide if the machine needs to
be dismantled or not. Although acoustic signal analysis is quite common for the detection of faults in geared
systems, vibration-based diagnosis has been more widely used. According to this technique, the presence of a
fault will be indicated by changes in the vibration signals picked up from the gearbox casing.

Although sometimes the fault appears to be clearly reflected in a machine’s vibration signal, its
characteristic features are usually hidden in the vibration signal and, therefore, a sensitive technique for fault
signature is needed. Most techniques have sought to represent the machine vibration signal in either the time
domain or the frequency domain. The time synchronous average (TSA) providing an average time signal of
one individual gear over a large number of cycles [1] has been acknowledged as a powerful and very successful
tool in the detection of gear faults [2,3] since it can remove the background noise and all the periodic events
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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that are not exactly synchronous with the gear of interest. The use of the residual signal obtained by removing
the regular gear meshing harmonics from the TSA is also being frequently used as a fault diagnosis technique
[4,5]. The resulting residual signal contains essentially the portion that is caused by the gear fault and
geometrical irregularity.

A time–frequency analysis offers an alternative method to signal analysis by presenting information in the
time–frequency domain simultaneously. The method known as short-time Fourier transform (STFT) and
proposed by Gabor [6] is probably the most widely used time–frequency representation. The characteristic
feature of the STFT is the application of the Fourier transform to a time varying signal when the signal is
viewed through a narrow window centred at a time t. In this way, the frequency content is obtained at time t

and in any other time if the process is repeated. The resolution depends on the size of the window, and as it is
constant, a high resolution in time and frequency cannot be obtained simultaneously. So, the window must be
chosen for locating sharp peaks or low frequency features and, therefore, its resolution is often unsatisfactory.

For this reason, a more flexible method is required. Wavelet transform (WT) uses more general functions
than the sinusoid functions of the Fourier transform as the basis on which a signal is constructed. Originally
developed at the end of the 1980s [7–9], WTs are well known for their capability to treat transient signals and
have been generating increasing interest in recent years as a tool for fault detection both in machinery [5,10]
and in civil engineering structures [11–15] and in other engineering fields [16]. The advantage of wavelet
analysis, as opposed to Fourier analysis, is that a WT decomposes a signal into a series of short duration
waves or local basis functions (wavelets) on the time axis [17–19], which allows the analysis of local
phenomena in vibration signals, such as those caused by faults.

Although visual inspection of certain features of WT can be suitable for identifying damage in some
particular situations, for a reliable and automated detection it is necessary to develop a more suitable
diagnosis tool. Fault diagnosis is essentially a kind of pattern recognition, or classification. Artificial neural
networks (ANN) are a valuable pattern-recognition method in theory and in application. Because of this,
models based on neural networks have been applied in recent years in the detection and diagnosis of rotating
machinery [4,20–23]. Neural networks can be trained on measured response signals of healthy and damaged
specimens to recognise the actual condition of the structure.

The neural network architecture will depend on which level of identification is required. To detect the
occurrence of damage, a neural network based on the novelty detection technique can be used [24,25].

The objective is to monitor a sequence of patterns for a healthy structure under normal conditions. These
patterns are used as both input and output to train the network. If a signal differs significantly from the herd,
then the occurrence of this novelty or anomaly means that damage is alarmed. This approach can be
performed by using an auto-associative neural network (AANN).

This paper presents a robust fault detection method in rotating machinery. The proposed method
allows an online fault diagnosis and furthermore, unlike other techniques, such as those based on TSA, it
works under different operational conditions, a different angular speed and torque transmitted. This is
why the signal amplitude wavelet map, in conjunction with an auto-associative neural network, has been used
to assess the condition of the machine. An approach for gear fault detection, combining wavelet map patterns
with supervised multilayer neural networks, was proposed in Ref. [26]. The advantage of using an
unsupervised NN like AANN is that the different patterns used during the training stage do not need to be
known previously as this task is performed automatically. Furthermore, the method described in this
paper provides a vector of novelty indexes unlike other procedures based on a unique parameter,
and this vector shows us which wavelet coefficients are affected by a perturbation in our rotating
machinery; therefore, as we are monitoring the time–frequency domain, we can offer either warnings or
localisations of the perturbations, and in this sense we can provide a level 2 diagnostic according to Rytter’s
classification [27].

The layout of the paper is as follows. In Section 2, we will first give some highlights of how the AANNs can
provide a measure of novelty or novelty index. In the following sections, we will describe concisely the wavelet
theory and discuss how it will be used in this work as a methodology for detecting damage. The effectiveness
of the proposed method will be investigated through a numerical simulation study and an experimental study
performed on a pump rotor. At the end of the paper we will summarise the present study with conclusions and
suggestions for future work.
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2. Auto-associative neural networks

Novelty or anomaly detection can be used as a philosophy for damage detection purposes in machines or
structures. According to this philosophy, if a new pattern of measured data in the machine or structure differs
from previously measured patterns under normal conditions a clear symptom of damage appears i.e., novelty
will indicate the presence of a fault.

Among the different methods of novelty detection, the approach based on the use of AANNs is taken
here [25]. These kinds of networks correspond to a form of feed-forward multilayer perceptron (MLP)
networks configured to reproduce at the output layer those patterns that are present at the input, i.e., the
targets used to train the network are simply the input vector themselves, so that the network is attempting to
map each input vector onto itself. It represents a form of unsupervised training, as no independent target data
is provided.

This network is designed with a bottleneck hidden layer (Fig. 1), i.e. with fewer nodes than the input and
output layers, with the purpose of enforcing the network to learn or capture the most significant features or
principal components of the input patterns by eliminating their redundancies. This type of configuration with
only one hidden layer provides a linear mapping in the bottleneck layer. If, besides the bottleneck layer, two
nonlinear hidden layers are also included between the input layer and the bottleneck layer (encoding layer) and
between the bottleneck layer and the output layer (decoding layer) (Fig. 1), respectively, nonlinear mapping is
found [28,29].

The training of the AANN will involve finding the values of the connection weights as well as the optimum
number of neurons in the encoding and decoding layers which minimise an error function between the actual
network output and the corresponding input values in the training set. During the training of the network only
measured data of the healthy structure are used. The most commonly used training algorithms are based on
back-propagation as error function, a bias-variance trade-off coming from the decomposition of the error into
bias and variance components [28,30], has been used.

2.1. Novelty index vector

Once the AANN has been trained, the training pattern vector yi is fed again into the network yielding an
output pattern vector yo. The residual vector obtained by measuring the difference between the input and an
output vector is known as the novelty index vector:

k ¼ jyo � yij. (1)
O1 O2 O3 ON"

I1 I2 I3 IN"

Fig. 1. Nonlinear auto-associative neural network.
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The procedure is repeated for the entire sequence of training data vectors obtaining a mean value vector
kmean and a standard deviation vector r for each component of the novelty index vector. From these values, a
threshold to judge if damage occurs can be defined as follows:

d ¼ kmean þ 4r. (2)

During the testing stage, new sequences of measured data for the same machine (undamaged and damaged)
are fed into the trained network. For each input data vector, a novelty index vector can be defined as
previously done. If this index is higher than or equal to the threshold vector d, then the measured data were
taken from a damaged machine.

3. Signal pre-processing using WTs

Faults in rotating machinery originate small perturbations in the vibration signal collected by the
transducers. Moreover, different kind of faults are associated with different bands of frequency and,
therefore, a suitable procedure which guarantees a good sensitivity to local-global events is necessary as a
diagnosis tool. WTs provide a powerful tool for showing local features of a signal and will be dealt within this
paper.

3.1. The continuous WT

The continuous wavelet transform (CWT) of a signal f(t) is defined as a convolution integral of f(t) with
scaled and dilated versions of a basic wavelet function, called the ‘mother wavelet’ c(t):

Cab ¼
1ffiffiffi
a
p

Z 1
�1

f ðtÞc
t� b

a

� �
dt, (3)

where a and b are the dilation and translation parameters, respectively. Sharp transitions in f(t) will create
wavelet coefficients Cab with large amplitudes, which will be used as the basis to detect faults.

On the other hand, the original signal can be recovered using the inverse CWT as follows:

f ðtÞ ¼
1

Kc

Z 1
�1

Z 1
�1

CabcabðtÞdb
da

a2
, (4)

where Kc is a constant dependent on the wavelet type.

3.2. The discrete WT

The CWT is highly redundant, which means that not all the coefficients are necessary to reconstruct the
original signal. This redundancy requires a significant amount of computation time and resources. A more
efficient and compact form of wavelet analysis, with a significant reduction in computation time, can be
reached by decomposing the signal into a discrete subset of translated and dilated parent wavelets, usually
taking as dilation and translation parameters integer powers of two (a ¼ 2j, b ¼ k 2j), which corresponds to
dyadic sampling. Furthermore, this kind of sampling, unlike other kinds of discrete wavelets, is shift
invariance like the CWT, which means that the WTs of a signal and of a dyadic scale or time-shifted version of
the same signal are simply shifted versions of each other.

Using the discrete scales, the discrete wavelet transform (DWT) is defined as follows:

Cjk ¼ 2�j=2

Z 1
�1

f ðtÞcð2�j t� kÞdt ¼

Z 1
�1

f ðtÞcjkðtÞdt. (5)

In an analogous way, with the CWT the original signal can be rebuilt using the inverse discrete wavelet
transform (IDWT):

f ðtÞ ¼
X
j2Z

X
k2Z

CjkcjkðtÞ. (6)
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If in Eq. (6) it is considered that the WT Cjk is only available up to the level J, the original function can be
written as

f ðtÞ ¼
X1

k¼�1

CA
JkfJkðtÞ þ

X
jpJ

X1
k¼�1

CjkcjkðtÞ

 !
¼ AJ þ

X
jpJ

Dj, (7)

where fJk is the scaling function at level J, AJ is called the approximation function or sub-signal at level
J, Dj(t) is detail sub-signal defined for each level j and CA

Jk are the level-J approximation coefficients obtained
as follows:

CA
Jk ¼

Z 1
�1

f ðtÞfJkðtÞdt. (8)

In Eq. (7), the wavelets cover the spectrum up to scale J, while the rest is done by the scaling function.
Therefore, the number of wavelets is now limited. This type of decomposition is called multiresolution analysis
as it generates a hierarchical set of approximation and detail sub-signals, which give information about the
trends and fluctuations, respectively, at different scales (frequencies).

As for most functions the WTs do not have analytical solutions, and they are calculated numerically by
means of the fast wavelet transform (FWT) developed by Mallat [8]. Since, as was commented above, the WT
can be seen as a filter bank, this algorithm uses a series of high and low pass filters to progressively find the
wavelet and scaling function transform coefficients. More details about this algorithm can be found in Strang
and Nguyen [31].

For the study performed in this paper, the detail sub-signals are extremely relevant as they are most sensitive
to the changes or fluctuations of the vibration signal originated by faults. Furthermore, the suitable scales will
be those corresponding to integer multiples of the fault frequency (harmonics). In this way, we will consider
those scales smaller than the scale related to the meshing frequency of the gear which will allow all the
frequencies higher than the meshing frequency to be checked, particularly the harmonics of the tooth
frequency.

DWT has some properties or characteristic features which make it specially suitable for our purposes of
fault detection. Among others, the most relevant are the localisation and the characterisation of the local
regularity of the signal subjected to analysis [19,32,33].

4. AANN based wavelet methodology for online fault diagnosis of rotating machinery

The principle of the proposed method is feature extraction by DWT of the collected vibration signal and
then, from these features, identification of significant changes or novelty detection using an auto-associative
network. As it is assumed that damage will alter the measured patterns, novelty index vector will indicate a
fault and its localisation (angular shaft position where the fault is located).

Therefore, the methodology proposed for pattern-recognition-based online fault diagnosis is performed in
three modules or stages. The first module is the measurement and signal pre-processing using DWT; the
second module corresponds to the training of the AANN and, finally, the last stage is the recognition module
using the previously trained AANN (Fig. 2).

The resulting diagnosis system will have the following characteristics:
1.
 The signals are measured from the casing of the rotating machine.

2.
 Automatic and online diagnosis.

3.
 Identification of faults under different operational conditions, different angular speed and torque

transmitted.

4.
 Partial localisation of the damaged machine component, i.e., if the nature of the failing component

produces different frequency events that are not multiples of the frequencies generated by another potential
failing part, then we will be able to determine which rotating element is deteriorating. In this way, for
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instance, if a gearbox has different gears, the identification of the damaged one will be successful if its
number of teeth does not coincide or is not a multiple of the number of teeth of the other gears.
5.
 Robustness, since the background noise does not affect the diagnosis (if the level or amplitude
of this contribution is lower than the amplitudes caused by pulses originated by irregular operational
conditions).

4.1. Measurement and signal pre-processing

By application of WT, vibration signals in time domain can be transformed to time–frequency signals. The
main idea behind the use of wavelets is based on the fact that the presence of local faults introduces short-
duration changes in the vibration signal, which can be observed from the distribution of the wavelet
coefficients for the CWT or the detail signals for the DWT. The procedure to follow during this first stage is
the following:
1.
 Measure the vibration signal of the machine during every revolution of the shaft. The transducer’s location
must be appropriate for monitoring the faults being investigated.
2.
 The second step requires the selection of the most suitable wavelet for analysis and its level of
decomposition. Since it is difficult to characterise a pulse caused by abnormal conditions, we do not have
any information for choosing the most optimal wavelet. The selection is usually done by trial and error.
However, we know that differences among various faults correspond to different levels of frequencies and,
therefore, this can be used to establish the level at which the wavelet analysis must be performed in the case
of the DWT. Therefore, different levels of decomposition can be defined for different kinds of faults.
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3.
 From the measured signal, compute the detail signal coefficients of the DWT according to the level of
decomposition chosen previously. These coefficients carry, in a compact way, information of the main local
and global features of the signal and are therefore, taken as the input feature vectors to the classifying
network.

4.2. Training of the AANN

The implementation of the auto-associative neural network for damage detection requires two modules or
stages: The training stage and the detection stage. Vibration data of intact machinery obtained analytically or
experimentally, are used as training samples to train the AANN. During this stage, the weights are adjusted
and the configuration of the artificial neural network is defined; then the novelty index vectors are determined.
The procedure is as follows:
1.
 One AANN is defined for each level of decomposition adopted in the previous stage. The detail
coefficient vectors of the DWT are taken as input and output parameters of the network. In order to adjust
the weights and the number of neurons in the encoding and the decoding layers for each AANN, for the
given training sets, a minimisation of an error based on a natural trade-off between bias and variance is
used [30].
2.
 Definition of the novelty index vector. To do this, once each network has been trained, the training
pattern vectors are again introduced to the AANN. Then a residual vector is defined from the difference
between each one of the output and input vectors. With all the residual vectors determined in this way,
threshold parameters or novelty index vectors are determined statistically for each component of these
vectors.

4.3. Recognition

The trained network is able to predict faults when a new set of measured data is presented as input to the
trained network. To this end, in this stage different vibration signals, corresponding to normal and anomalous
operational conditions of the machine, are used as input to the trained networks to check their sensitivity and
robustness as a fault detection tool. The procedure is as follows:
1.
 Analysis of the different vibration signals using the DWT in order to obtain the detail coefficients.

2.
 Introduction of the detail coefficient vectors to the trained AANN and determination of the residual

vectors by subtraction between the output and input vectors.

3.
 Estimation of the existence or non-existence of machine fault by comparing the residual vectors with the

threshold parameters which were calculated in the training stage. The testing results will give us an idea of
the effectiveness of the proposed method as an online fault diagnosis tool for our rotating machinery.

5. Case studies

The ability of the proposed method to detect faults is evaluated with two different cases. The first data set is
numerically simulated while the second is entirely experimental. In both cases the methodology proposed in
the previous section is used.

The simulated case is based on assumed signals under three different operational conditions of a nonlinear
system; the introduction of distortions in some of these signals allow evaluation of the performance of the
diagnosis method proposed in this paper. In the second case, this methodology is applied to a real rotating
machine; this is a gear box in a pump station, where the pitting damage is studied.

In both cases, the robustness of the method is evaluated by checking either the rate of false warnings or the
rate of success for damaged signals at different operating points.

For all the steps involved in the diagnosis procedure, i.e., signal pre-processing, training and recognition,
specialised software was developed in MATLAB.
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5.1. Example 1: numerical study

For the numerical study, three dissimilar signals representative of three different measurements of a rotating
machine, recorded at every revolution of the shaft, were taken. Each one of these signals, s1, s2 and s3, is
characterised by its amplitude (10, 35 and 50) and frequency (10, 7 and 1Hz), respectively. In the time domain,
the distribution is represented by one rotation of the pinion, which included 51 signal samples every 0.5
Angular Units (Fig. 3).

In order to study the basic functionality of damage recognition, 600 healthy data sets were obtained by
making copies of the signals corresponding to normal condition and distorting each copy with different noise
vectors since, in reality, measured signals will be degraded by various sources of noise. In the absence of any
prescription, Gaussian noise with standard deviation equal to one and zero mean was added to the
uncorrupted vibration signals at every sample point. From the 600 data sets, 400 were used for training and
validation of the AANN parameters, and the remaining 200 patterns were presented to the AANN in order to
check the false warnings of the system.

The fault in the signal has been simulated by adding a perturbation to the raw signals using a cubic spline
distributed in different shaft locations. Furthermore, perturbations of different duration (angular supports
between 0.03 and 0.05 Angular Units) and amplitude (values between 1 and 12) have been considered, finally
generating a set of 1404 perturbed signals, which will be used to evaluate the ability of the AANN to detect
faults (Fig. 4).

5.1.1. Signal pre-processing

In this stage the coefficients of the DWT must be calculated with the purpose of their being used as input
feature vectors of the AANN. To do this, the vibration signals with or without perturbations were transferred
to a computer where a MATLAB program was used to transform each signal into the wavelet domain. To
apply the WT, it is necessary to previously select the most suitable family of wavelets as well as the level of
decomposition required. To perform this, although there is no defined criterion and the selection is usually
done by trial and error, it is necessary to take into account the characteristics of the vibration signals and also
the perturbation when it is known.
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Assuming as possible only those wavelets that allow an FWT to be carried out, the evaluation of their most
relevant properties should be taken into account to guide the wavelet selection. Among these properties,
regularity, the number of vanishing moments and support were considered.

According to the first property, Haar wavelets were discarded because of their irregularity as the
introduction of artificial discontinuities on the original signal, which would decrease the robustness of the
detection system, would not be desirable.

The consideration of the number of vanishing moments of wavelets is very important too because it
determines the order of the polynomials that can be approximated. Wavelets with k+1 vanishing moments
produce zero or very close to zero wavelet coefficients for polynomial signals of k order, i.e., it ensures the
suppression of signals that are polynomials of angular units lower or equal to k. According to this, we are
interested in the families of wavelets providing small coefficients when the nonperturbed original signals are
transformed; however, when perturbations are added, the coefficient values should be high enough to reflect
these changes. In the problem subjected to study, the original signals can be approximated using linear or
quadratic polynomials, and the perturbations are superimposed using cubic splines. Therefore, the candidate
wavelets should have three vanishing moments with the purpose of showing a high value changes originated
by the perturbations.

The support of a function is defined as the smallest space-set (or time-set) outside of which function is
identically zero. This feature allows identification of those coefficients, which are affected by an event located
in a particular time or frequency. For our purpose, we are interested in wavelets having the widest support in
frequency and, therefore, the most compact support in time set, i.e., in the angular domain, since it allows a
more reliable estimation of the location of the perturbations.

According to the previous three criteria, biorthogonal wavelets of order 3.9 were chosen for the analyses,
where 3 and 9 are the wavelet orders for reconstruction and modification, respectively. These wavelets
constitute a set of compactly supported biorthogonal spline wavelets with three vanishing moments.

Once the wavelets have been selected, it is necessary to establish the suitable number of levels of
decomposition which will be based on the nature of the signal. As the perturbations have been included on
the original signals using angular supports between 0.03 and 0.05, the corresponding frequencies of interest
will be included in the 20–60Hz range. According to this range, the wavelet coefficients are obtained from
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Eq. (5) for wavelet scales 2, 3, 4 and 5 [33], which will result in 27, 23, 21 and 20 coefficients, respectively, for
each level.

5.1.2. Training

After the feature extraction using DWT, the next step is the training of the AANNs. According to the four
levels of decomposition of the raw signal performed with DWT, four different damage recognition networks
will be established, one for each level.

As reported in Section 2, the AANN configuration has the same number of input and output nodes, which
correspond for each one of the four networks to the number of wavelet coefficients obtained for each level of
decomposition. Therefore, in order to configure the topology of each one of the four AANNs, only the
appropriate number of neurons in the encoding and decoding layers has to be determined. In general, it is not
straightforward to determine the best size of the networks for a given system. It may be found only through a
process of trial and error. This is performed by configuring different NN architectures with a different number
of neurons, finally choosing those configurations which turn out to be more optimal. To this end, starting with
a random weight of each connection the resilient propagation learning algorithm is used for the network
training and validation in order to adjust the weight functions of the connections by minimising an iterative
procedure in which we increase the number of neurons, and for every possible architecture, we choose the
optimum by minimising the bias-variance error function between the output and input vectors.

To determine the optimal number of neurons in the encoding and decoding layers, configurations from one
neuron to a number approximately equal to 70 per cent of the number of input neurons for each AANN have
been considered.

Finally, the following AANN topologies have been taken for each level of wavelet decomposition:
�
 Level 2: 27� 5� 1� 5� 27

�
 Level 3: 23� 9� 1� 9� 23

�
 Level 4: 21� 10� 1� 10� 21

�
 Level 5: 20� 10� 1� 10� 20
One of the advantages of this kind of NNs is their ability to extract the main features of all the training
patterns, which allows the reduction of the noise injected in the training patterns. This can be observed
in Figs. 5–8 in which the wavelet coefficients corresponding to the four levels of decomposition of all the
training pattern vectors are shown as input (Figs. 5a–8a) and output (Figs. 5b–8b) of the AANNS. It is
evident, comparing the inputs with the corresponding outputs, that the AANNs are able to extract the
nonlinear features of the three signals, which represents an advantage for detecting any perturbation due to
damage.

Once the four networks have been trained, it is necessary to establish the threshold parameters, i.e., the
novelty indexes. This is performed for each input coefficient to the resulting NN; therefore, a vector of novelty
indexes for each level of decomposition of wavelets is obtained. To do this, the training pattern vectors are
introduced again to the trained AANNs, and a set of residual vectors from the difference between each one of
the output and input vectors is obtained. The threshold values for each coefficient are calculated from these
vectors according to Eq. (2).

5.1.3. Recognition testing

In this stage, the trained AANNs were tested using 200 healthy patterns and 1404 perturbed patterns. The
main purpose of this step is to evaluate the ability of these NNs to detect perturbations in the signals produced
by faults.

To this end, firstly, we input the 200 healthy testing signals corrupted by noise that have not been used in the
training stage, with the purpose of detecting wrong predictions or false warnings in the network outputs. Once
these signals have been pre-processed with four levels of decomposition, the wavelet coefficients are inputted
in the trained AANNs, and the rate of false warnings given is shown in Table 1. From the results, it can be said
that this rate is very low, especially for the three highest levels, which ensures the reliability of the NNs in the
case of non-perturbed signals.
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In order to examine the sensitivity of the proposed method to detect faults, the 1404 signals generated by
adding a perturbation to the healthy signals are tested. As remarked above, the perturbations consist of cubic
splines added to the original signals at different locations between 0.1 and 0.4 Angular Units, with angular
support lengths varying between 0.03 and 0.05 and with amplitudes included in the range 1–12.
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Fig. 7. Comparison of the AANN (a) input and (b) output wavelet coefficients corresponding to level 4 of decomposition.
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Fig. 8. Comparison of the AANN (a) input and (b) output wavelet coefficients corresponding to level 5 of decomposition.
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The results obtained for the three signals, when different angular support lengths and amplitudes are considered,
are shown in Tables 2 and 3, respectively. In these tables, the rate of successful damage detection is shown.

In the same way, to give an idea of the sensitivity of the novelty index to the amplitude of the perturbation,
Fig. 9 shows the value of this index obtained for three training samples corresponding to perturbations of 9, 10
and 11 units of amplitude, respectively, centred at 0.25 units of angular shaft position and with supports of
0.03 angular units. In the same figure, the threshold values are represented too. According to Section 2.1, if
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Table 2

Performance of the method for different angular support lengths of perturbation

Angular support s1 (%) s2 (%) s3 (%)

0.03 70.51 75.54 80.13

0.04 83.33 82.69 84.61

0.05 83.33 88.46 85.25

Table 1

Rate of false warnings of the trained AANNs

Level 2 6.50%

Level 3 2.50%

Level 4 4.50%

Level 5 2.50%

Table 3

Performance of the method for different amplitudes of perturbation

Amplitude s1 (%) s2 (%) s3 (%)

1 25.64 30.76 35.89

2 38.46 51.28 33.33

3 48.71 48.71 76.92

4 64.10 69.23 71.79

5 87.17 94.87 92.30

6 89.74 94.87 92.30

7 97.43 97.43 100

8 97.43 100 100

9 100 100 100

10 100 100 97.43

11 100 100 100

12 100 100 100
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any component of the novelty index vector is higher than or equal to the threshold vector for any localisation
and for any level of decomposition, the signal is considered to belong to a damaged machine. This is
reasonable taking into account that a 4s criterion was chosen in Eq. (2). Because of it, all the signals shown in
Fig. 9 are considered to be damaged, observing the central region of the x-axis in which the perturbation was
added to the original signal. In particular, for the perturbations of 9 and 10 units and level 5 of decomposition,
points are on the threshold line near the central region, which means a fault signal. For the perturbation of 11
units and level 3 of decomposition, the point is clearly over the threshold line.

With the same purpose, the sensitivity of the novelty index to the length of the support was studied too. To
do so, the novelty index obtained for three training samples, corresponding to a perturbation of 9 units of
amplitude, centred at 0.25 units of angular shaft position, and with three different supports of 0.03, 0.04 and
0.05 angular units, respectively, for the perturbation, is plotted in Fig. 10. The same conclusions as in Fig. 9
can be obtained in this particular case.

Some observations may be made from Tables 2 and 3 and from Figs. 9 and 10 as follows:
(a)
 In general, the performance of the AANNs as a fault detection method is good.

(b)
 The length of the angular support used to define the perturbation, i.e., the duration of the perturbation,

does not greatly affect the results.

(c)
 The sensitivity of the method depends on the amplitude of the perturbation, because when the level of the

amplitude is close to the level of noise, the rate of success decreases. Nevertheless, the networks were capable
of detecting about half of the damaged cases when the amplitude of the perturbation is equal to three.
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It is necessary to remark that, with this fault detection system a novelty index is defined for each wavelet
coefficient obtained with the four levels of decomposition. This constitutes an advantage compared with other
proposed detection methods since it yields a time–frequency distribution of the machine warnings that allows
one to determine in which angular positions and frequencies the anomalies occur.

5.2. Fault diagnosis for pump rotor

5.2.1. Vibration data

The vibration signals for this second example were obtained from Ypma et al. [34]. They were measured
from two identical pumps driven by an electric motor and composed of two delaying gear combinations. The
number of teeth of the first set of gears was 20, while in the second set it was 40. While one of the pumps was
operating in healthy conditions with no faults, the other was damaged due to the presence of pitting in both
gears.

Acceleration vibration signals were measured with seven accelerometers located at different positions on the
system. The first two were radially mounted near the driving shaft, separated at an angle of 901, while the third
accelerometer was used to measure the axial acceleration near the driving shaft; the remaining four
accelerometers were installed radially at different locations on the machine casing.

The sets of measurements were obtained under two different operational conditions corresponding
to high and low loads. Furthermore, the signals were low-pass filtered with cut-off frequencies of 1
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and 5 kHz, respectively, for sampling rates of 3.2 and 12.8 kHz. Therefore, four sets of measurements were
obtained.

In this work, only vibration signals measured with the filter of 1 kHz will be processed with DWT to extract
the main features for using as inputs to AANNs according to the procedure proposed in Section 4. As the low-
frequency measurements were registered during 24.3 s and the angular speed of the machine was 1000 rpm, 405
revolutions of the shaft were measured and, therefore, 405 signals were available for each sensor.

5.2.2. Signal pre-processing

As in the previous example, during this step it is necessary to select the most appropriate wavelet for the pre-
processing as well as the level of decomposition. Gear damage will influence the vibrational measurements
recorded in the machine casing by modulating the amplitudes of the signals at the meshing frequencies and
their harmonics. This fact will help to establish the level of decomposition required.

To choose the optimal wavelet, only orthogonal and biorthogonal wavelets were considered as they enable
the DWT to be carried out using the FWT. Haar wavelet was also eliminated because of its irregularity.
Finally, although there were more candidates, Daubechies wavelet with six vanishing moments (‘db6’) was
selected because of its capabilities.

On the other hand, as the meshing frequencies of both gear units are 333.3 and 666.6Hz, respectively, three
levels of decomposition of the selected wavelet are suitable for analysing the frequency affected by the damage. For
each one of these levels, 105, 58 and 34 wavelet coefficients were obtained which were used as input of the NNs.
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5.2.3. Training of the AANNs

In this example, it was necessary to establish 21 AANNs since vibration signals were measured on seven
sensors and, besides, three levels of decomposition based on DWT were performed on every signal.

From the 810 signals recorded from the undamaged pump under the two levels of load, 650 were
taken as training pattern for the AANNs, while the remaining 160 signals were used to test the training
networks.

The training and configuration of the AANNs was performed as in the first example, the result being the
topologies as shown in Table 4.

Once the AANNs were trained, the training patterns were introduced again in the networks, which allowed
the residual vectors to be determined, and therefore, the novelty indexes.
Table 4

Topology of the different AANNs

Level 1 Level 2 Level 3

Sensor 1 105� 90� 1� 90� 105 58� 33� 1� 33� 58 34� 17� 1� 17� 34

Sensor 2 105� 45� 1� 45� 105 58� 31� 1� 31� 58 34� 18� 1� 18� 34

Sensor 3 105� 81� 1� 81� 105 58� 32� 1� 32� 58 34� 12� 1� 12� 34

Sensor 4 105� 59� 1� 59� 105 58� 37� 1� 37� 58 34� 16� 1� 16� 34

Sensor 5 105� 87� 1� 87� 105 58� 38� 1� 38� 58 34� 20� 1� 20� 34

Sensor 6 105� 86� 1� 86� 105 58� 37� 1� 37� 58 34� 20� 1� 20� 34

Sensor 7 105� 86� 1� 86� 105 58� 39� 1� 39� 58 34� 19� 1� 19� 34

Table 5

Rate of false warnings of the trained AANNs

Low load High load

Level 1 Rate (%) Level 1 Rate (%)

s1 3.95 s1 0.25%

s2 4.19 s2 13.82%

s3 3.95 s3 2.46%

s4 6.17 s4 8.88%

s5 2.46 s5 2.46%

s6 0 s6 4.19%

s7 6.17 s7 11.35%

Level 2 Rate (%) Level 2 Rate (%)

s1 1.72 s1 11.60

s2 1.48 s2 1.48

s3 1.23 s3 0

s4 3.40 s4 0

s5 8.14 s5 6.91

s6 0.74 s6 10.37

s7 8.39 s7 10.12

Level 3 Rate (%) Level 3 Rate (%)

s1 1.23 s1 0.74

s2 0.49 s2 0

s3 4.93 s3 0

s4 10.12 s4 6.17

s5 4.93 s5 4.93

s6 1.23 s6 0

s7 0.25 s7 0
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5.2.4. Recognition testing

Firstly, the 160 signals, measured on the undamaged pump and not used during the training stage, were
introduced in the AANNs to check the false damage warnings of the detection system. The rate of false
warnings is shown in Table 5 for the two load conditions and for the seven sensors. The reliability of the
networks is again very good when non-faulted signals are used.

Finally, the 810 signals recorded by each sensor over the damaged pump were introduced in the AANNs.
The rate of successful damage detections is shown in Table 6.

From an observation of the results, it can be said that the diagnostic ability of the method is
strongly sensitive to the transducer locations and to the operating conditions. Very good results were
obtained for sensors 4, 6 and 7, radially mounted on the machine casing, for the first two levels of
decomposition and under low load conditions. This variability can be due to the effect of the transfer function
between the gear teeth and the casing location, where the vibration is picked up. According to this, the best
locations would be those more sensitive to the frequencies of the fault and its harmonics. Moreover, this
transfer function will also change with the operating conditions. Better results were obtained for the low level
of load. This may be due to the fact that the working conditions under low load would be farther from the
nominal conditions than those under high load which would contribute to increase in the amplitude of the
vibrations. Actually, it would be advisable, for condition monitoring purposes, to compare vibration
signals picked up under the same operating conditions, although it is practically impossible from a practical
point of view.

On the other hand, although the method is suitable for localising faults, in this particular example, as the
number of teeth on the input shaft is a multiple of the number of teeth on the output shaft, it is not possible to
localise the component which fails and, therefore, only warning predictions are provided.
Table 6

Rate of success for damaged signals

Low load High load

Level 1 Rate (%) Level 1 Rate (%)

s1 43.46 s1 0

s2 67.65 s2 7.65

s3 2.46 s3 3.70

s4 97.03 s4 63.20

s5 0.70 s5 0

s6 86.67 s6 0

s7 100 s7 100

Level 2 Rate (%) Level 2 Rate (%)

s1 14.56 s1 0.25

s2 28.14 s2 3.20

s3 3.20 s3 0

s4 99.01 s4 2.71

s5 27.65 s5 13.82

s6 88.64 s6 5.18

s7 100 s7 83.20

Level 3 Rate (%) Level 3 Rate (%)

s1 0.70 s1 0

s2 0.25 s2 1

s3 0 s3 0

s4 38.02 s4 5.67

s5 2.46 s5 0

s6 0.49 s6 0

s7 19.7% s7 1.48
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6. Conclusions

In this paper, a method for online fault diagnosis of rotating machinery, combining the capabilities of
AANNs and WT, has been developed. Pattern recognition procedures based on neural approaches were used
to compare DWT coefficients obtained from undamaged and damaged gear vibration signals. The difference
between network output and input wavelet coefficients was used as a fault detection symptom. Furthermore,
the use of a novelty index vector defined from DWT, unlike the scalar indexes used in other procedures, makes
it possible to determine the ranges of time and frequency for which the faults appear, which can be used, in
some cases, as a tool to localise the damaged tooth.

Another advantage of the proposed method is that DWT is performed directly on the raw vibration signals
and, not by processing the TSA, whose evaluation can be complex. Then, as it is not necessary to calculate any
ensemble average over many revolutions, relevant information is not lost by, for instance, lack of
synchronism, and moreover, fault predictions can be given for every revolution, which makes the diagnosis
procedure faster and requires less space to store the picked up signals.

On the other hand, according to the results presented, the analyses considered are very sensitive to the
transducer locations as the machine casing acts as a filter whose transfer function is highly influenced by the
spatial position of these transducers. Because of this, in order to optimise the locations, it would be very useful
to perform a prior sensitivity study using an updated numerical model of the machine if it were available.

For future research, it is the intention of these authors to develop the next phase, which will allow this
diagnosis procedure to be combined with another technique providing a criterion to quantify the severity of
the fault.
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